## The Gorensteinness of the symbolic blow-ups for certain space monomial curves

HTML articles powered by AMS MathViewer

- by Shiro Goto, Koji Nishida and Yasuhiro Shimoda
- Trans. Amer. Math. Soc.
**340**(1993), 323-335 - DOI: https://doi.org/10.1090/S0002-9947-1993-1124166-4
- PDF | Request permission

## Abstract:

Let ${\mathbf {p}} = {\mathbf {p}}({n_1},{n_2},{n_3})$ denote the prime ideal in the formal power series ring $A = k[[X,Y,Z]]$ over a field $k$ defining the space monomial curve $X = {T^{{n_1}}}$, $Y = {T^{{n_2}}}$ , and $Z = {T^{{n_3}}}$ with ${\text {GCD}}({n_1},{n_2},{n_3}) = 1$. Then the symbolic Rees algebras ${R_s}({\mathbf {p}}) = { \oplus _{n \geq 0}}{{\mathbf {p}}^{(n)}}$ are Gorenstein rings for the prime ideals ${\mathbf {p}} = {\mathbf {p}}({n_1},{n_2},{n_3})$ with $\min \{ {n_1},{n_2},{n_3}\} = 4$ and ${\mathbf {p}} = {\mathbf {p}}(m,m + 1,m + 4)$ with $m \ne 9,13$ . The rings ${R_s}({\mathbf {p}})$ for ${\mathbf {p}} = {\mathbf {p}}(9,10,13)$ and ${\mathbf {p}} = {\mathbf {p}}(13,14,17)$ are Noetherian but non-Cohen-Macaulay, if $\operatorname {ch} k = 3$ .## References

- Shiro Goto, Koji Nishida, and Yasuhiro Shimoda,
*The Gorensteinness of symbolic Rees algebras for space curves*, J. Math. Soc. Japan**43**(1991), no. 3, 465–481. MR**1111598**, DOI 10.2969/jmsj/04330465 - Jürgen Herzog,
*Generators and relations of abelian semigroups and semigroup rings*, Manuscripta Math.**3**(1970), 175–193. MR**269762**, DOI 10.1007/BF01273309 - Jürgen Herzog and Bernd Ulrich,
*Self-linked curve singularities*, Nagoya Math. J.**120**(1990), 129–153. MR**1086575**, DOI 10.1017/S0027763000003305 - Craig Huneke,
*On the finite generation of symbolic blow-ups*, Math. Z.**179**(1982), no. 4, 465–472. MR**652854**, DOI 10.1007/BF01215060 - Craig Huneke,
*The primary components of and integral closures of ideals in $3$-dimensional regular local rings*, Math. Ann.**275**(1986), no. 4, 617–635. MR**859334**, DOI 10.1007/BF01459141 - Craig Huneke,
*Hilbert functions and symbolic powers*, Michigan Math. J.**34**(1987), no. 2, 293–318. MR**894879**, DOI 10.1307/mmj/1029003560 - Mayumi Morimoto and Shiro Goto,
*Non-Cohen-Macaulay symbolic blow-ups for space monomial curves*, Proc. Amer. Math. Soc.**116**(1992), no. 2, 305–311. MR**1095226**, DOI 10.1090/S0002-9939-1992-1095226-6
J. P. Serre,

*Algèbre locale*:

*multiplicité*(3rd ed.), Lecture Notes in Math., vol. 11, Springer-Verlag, 1975.

## Bibliographic Information

- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**340**(1993), 323-335 - MSC: Primary 13A30; Secondary 13H10, 14M05
- DOI: https://doi.org/10.1090/S0002-9947-1993-1124166-4
- MathSciNet review: 1124166